1. Let $\Omega, \Omega^{\prime} \subset \mathbf{C}$ be open sets, and $f: \Omega \rightarrow \Omega^{\prime}$ be a holomorphic function. Let $\lambda: \Omega^{\prime} \rightarrow \mathbf{R}$ be a smooth function. Show that

$$
\Delta(\lambda \circ f)(z)=\left|f^{\prime}(z)\right|^{2}(\Delta \lambda) \circ f(z)
$$

2. Let f be a meromorphic function on \mathbf{C} that omits 3 values (one of which may be ∞). Show that f is constant.
3. Let $f, g: \mathbf{C} \rightarrow \mathbf{C}$ be holomorphic, such that $f(z)^{3}+g(z)^{3}=1$ for all z. Show that f, g are constant.
4. (a) Consider the lattice in \mathbf{C} generated by $\omega_{1}=1, \omega_{2}=e^{2 \pi i / 3}$. Show that in the differential equation

$$
\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-g_{2} \wp-g_{3}
$$

for the corresponding Weierstrass function, we have $g_{2}=0$.
(b) By considering functions of the form $\left(a+b \wp^{\prime}\right) / \wp$, show that there exist meromorphic functions f, g on \mathbf{C} such that $f^{3}+g^{3}=1$.

